Verifiable Security of Boneh-Franklin Identity-Based Encryption

Federico Olmedo
Gilles Barthe Santiago Zanella Béguelin

IMDEA Software Institute, Madrid, Spain

5th International Conference on Provable Security
2011.10.17
Identity-Based Encryption (IBE)

Problem of standard PKE:

key management is involved and troublesome
Identity-Based Encryption (IBE)

Problem of standard PKE:

key management is involved and troublesome

Proposed solution by Shamir:

to use recipient's ID as public key
Identity-Based Encryption (IBE)

Problem of standard **PKE**:

key management is involved and troublesome

Proposed solution by Shamir:

to use recipient’s ID as public key
Identity-Based Encryption (IBE)

Problem of standard PKE:

key management is involved and troublesome

Proposed solution by Shamir:

to use recipient's ID as public key

1. Encrypt with public key

 bob@comp.com

Alice → Bob
Identity-Based Encryption (IBE)

Problem of standard PKE:

key management is involved and troublesome

Proposed solution by Shamir:

to use recipient’s ID as public key

1. Encrypt with public key **bob@comp.com**

2. Bob authenticates **bob@comp.com**’s private key
Identity-Based Encryption (IBE)

Problem of standard PKE:

key management is involved and troublesome

Proposed solution by Shamir:

to use recipient’s ID as public key

1. Encrypt with public key `bob@comp.com`

2. Bob authenticates `bob@comp.com`’s private key

3. "bob@comp.com"’s private key
Should we rely on IBE schemes?

1984: Conception of identity-based cryptography
2001: First practical provably-secure IBE scheme.
2002-2005: Used as building block for many other protocols
2005: Security proof is flawed (but can be patched)
Verifiable security paradigm

Use formal methods to build certified security proofs of cryptographic systems

- Gives strong evidence of correctness of security arguments
- Enables *automation* in proofs
- Demonstrated *applicability* and *effectiveness*
1. The provably-secure BasicIdent scheme
2. CertiCrypt framework
3. Machine-checked proof of BasicIdent security
4. Summary and perspectives
An identity-based encryption scheme is specified by four polynomial algorithms:

- **Setup**
- **Encrypt**
- **Extract**
- **Decrypt**
An identity-based encryption scheme is specified by four polynomial algorithms:

- **Setup**
 - sec. param

- **Encrypt**

- **Extract**

- **Decrypt**
An identity-based encryption scheme is specified by four polynomial algorithms:

- **Setup**
 - Input: secret parameter
 - Output: public parameters

- **Encrypt**
 - Input: public parameters

- **Extract**
 - Input: public parameters

- **Decrypt**
 - Input: public parameters
An *identity-based encryption scheme* is specified by four polynomial algorithms:
An identity-based encryption scheme is specified by four polynomial algorithms:
An identity-based encryption scheme is specified by four polynomial algorithms:

- **Setup**: Takes `sec. param` as input and produces `public params` and `master key`.
- **Encrypt**: Takes `plaintext`, `ID`, and `public params` as inputs and produces `ciphertext`.
- **Extract**: Takes `ID` and `master key` as inputs and produces `secret key`.
- **Decrypt**: Takes `ciphertext`, `secret key`, and `public params` as inputs and produces `plaintext`.
Boneh-Franklin’s recipe

1. Extend the notions of IND-CPA and IND-CCA to IBE schemes
2. Build an IND-CPA-secure IBE scheme BasicIdent
3. Apply a variant of Fujisaki-Okamoto transformation to turn BasicIdent into an IND-CCA-secure IBE scheme
The BasicIdent scheme (definition)

Consider

- G_1 and G_2, two cyclic groups of prime order q,
- $\hat{e}: G_1 \times G_1 \rightarrow G_2$, an efficiently computable bilinear map

\[
\hat{e}(aP, bQ) = \hat{e}(P, Q)^{ab} \\
\langle P \rangle = G_1 \implies \langle \hat{e}(P, P) \rangle = G_2
\]

- Two hash functions

\[
\mathcal{H}_1 : \{0, 1\}^* \rightarrow G_1^+ \\
\mathcal{H}_2 : G_2 \rightarrow \{0, 1\}^n
\]

The BasicIdent IBE-scheme is defined as

Setup(k) : $P \leftarrow \$ G_1^+$; $mk \leftarrow \$ \mathbb{Z}_q^+$; $P_{pub} \leftarrow mk \cdot P$; return ($(P, P_{pub}), mk$)

Extract(mk, ID) : $Q_{ID} \leftarrow \mathcal{H}_1(ID)$; return $mk \cdot Q_{ID}$

Encrypt(ID, m) : $Q_{ID} \leftarrow \mathcal{H}_1(ID)$; $c \leftarrow \mathbb{Z}_q^+$; $m' \leftarrow \mathcal{H}_2(e(Q_{ID}, P_{pub})^c)$;
return $(c \cdot P, m \oplus m')$

Decrypt($sk, (u, v)$) : return $v \oplus \mathcal{H}_2(\hat{e}(sk, u))$
The BasicIdent scheme (security proof)

- Proof by reduction (in the random oracle model)
 - Define security goal (and adversarial model)
 - Consider a computational assumption
 - Reduce the security of the scheme to the intractability assumption.

\[
\Pr \left[A \text{ breaks the scheme} \right] \leq \mathcal{F} \left(\Pr \left[B \text{ solves the hard problem} \right] \right)
\]
Proof by reduction (in the random oracle model)

- Define security goal (and adversarial model)
 - **Indistinguishability under Chosen Plaintext Attack**
 - *Strengthened notion of PKE IND-CPA for IBE*
 - Consider a computational assumption
 - Reduce the security of the scheme to the intractability assumption.

\[
\Pr \left[A \text{ breaks the scheme} \right] \leq \mathcal{F} \left(\Pr \left[B \text{ solves the hard problem} \right] \right)
\]
The BasicIdent scheme (security proof)

- **Proof by reduction (in the random oracle model)**
 - Define security goal (and adversarial model)
 - **Indistinguishability under Chosen Plaintext Attack**
 - Strengthened notion of \(PKE \) IND-CPA for \(IBE \)
 - Consider a computational assumption
 - **Bilinear Diffie-Hellman assumption**
 - It is hard to compute \(\hat{\epsilon}(P, P)^{abc} \) given a random tuple \((P, a \cdot P, b \cdot P, c \cdot P) \).
 - Reduce the security of the scheme to the intractability assumption.

![Problem instance diagram](image)

\[
\Pr \left[A \text{ breaks the scheme} \right] \leq \mathcal{F} \left(\Pr \left[B \text{ solves the hard problem} \right] \right)
\]
The BasicIdent scheme (security proof)

- Proof by reduction (in the random oracle model)
 - Define security goal (and adversarial model)
 - Indistinguishability under Chosen Plaintext Attack
 Strengthened notion of PKE IND-CPA for IBE
 - Consider a computational assumption
 - Bilinear Diffie-Hellman assumption
 It is hard to compute \(\hat{e}(P, P)^{abc} \) given a random tuple \((P, a \cdot P, b \cdot P, c \cdot P)\).
 - Reduce the security of the scheme to the intractability assumption.

\[
Pr \left[\mathcal{A} \text{ breaks the scheme} \right] \leq \mathcal{F} \left(Pr \left[\mathcal{B} \text{ solves the hard problem} \right] \right)
\]

\[
\text{Adv}_{\text{IND-ID-CPA}}^{\mathcal{A}} \leq \text{Adv}_{\text{BDH}}^{\mathcal{B}} \frac{\exp(1) q_{\mathcal{H}_2} (1 + q \varepsilon \chi)}{2}
\]
The game-playing technique

Security Goal

\[
\text{Game } G_0 \\
\ldots \\
\ldots \leftarrow A(\) \\
\ldots \\
\text{Pr}_{G_0} [S_0] \leq f_1(\text{Pr}_{G_1} [S_1]) \leq \ldots \leq f_n(\text{Pr}_{G_n} [S_n])
\]

Reduction

\[
\text{Game } G_1 \\
\ldots \\
\ldots \\
\text{Game } G_n \\
\ldots \\
\ldots \leftarrow B(\) \\
\ldots
\]
CertiCrypt: machine-checked crypto proofs

Certified framework for building and verifying crypto proofs in the Coq proof assistant

- Combination of programming language techniques and cryptographic-specific tools
- Game-based methodology, natural to cryptographers
- Several case studies:
 - Encryption schemes: ElGamal, Hashed ElGamal, OAEP
 - Signature schemes: FDH, BLS
 - Zero-Knowledge protocols: Schnorr, Okamoto, Diffie-Hellman, Fiat-Shamir
Inside CertiCrypt (language syntax)

Language-based proofs

Formalize security definitions, assumptions and games using a probabilistic programming language.

pWhile: a probabilistic programming language

\[
C ::= \text{skip} \quad \text{nop}
\]

\[
| C; C \quad \text{sequence}
\]

\[
| V \leftarrow \mathcal{E} \quad \text{assignment}
\]

\[
| V \leftarrow \mathcal{D} \quad \text{random sampling}
\]

\[
| \text{if } \mathcal{E} \text{ then } C \text{ else } C \quad \text{conditional}
\]

\[
| \text{while } \mathcal{E} \text{ do } C \quad \text{while loop}
\]

\[
| V \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E}) \quad \text{procedure call}
\]

- \(x \leftarrow d \): sample the value of \(x \) according to distribution \(d \)

- The language of expressions (\(\mathcal{E} \)) and distribution expressions (\(\mathcal{D} \)) admits user-defined extensions
Observational equivalence

\[\models c_1 \sim^I_0 c_2\]

Example

\[\models x \leftarrow \{0, 1\}^k; y \leftarrow x \oplus z \sim_{\{x, y, z\}} \{0, 1\}^k; x \leftarrow y \oplus z\]

- Useful to relate probabilities

\[
\begin{align*}
\text{fv}(A) &\subseteq O \\
\models c_1 \sim^I_0 c_2 &\quad m_1 \equiv m_2 \\
\Pr[c_1, m_1 : A] &\equiv \Pr[c_2, m_2 : A]
\end{align*}
\]
Fundamental lemma of game-playing

If G_1 and G_2 are identical up to bad, then

$$|\Pr [G_1, m : A] - \Pr [G_2, m : A]| \leq \max\{\Pr [G_1, m : \text{bad}], \Pr [G_2, m : \text{bad}]\}$$
We extended CertiCrypt with:

- Types and operators for the groups G_1, G_2
- An operator for a bilinear map $\hat{e} : G_1 \times G_1 \to G_2$
- Simplification rules for computing normal forms of applications of the bilinear map \hat{e}
- An instruction for sampling from Bernoulli distributions
Formalizing the security goal:

\[
\text{Game } G_{\text{IND-ID-CPA}}:
\]

\[
\begin{align*}
(pparams, mk) & \leftarrow \text{Setup}(k); \\
(m_0, m_1, ID_\mathcal{A}) & \leftarrow \mathcal{A}_1(params); \\
b & \leftarrow \{0, 1\}; \\
c & \leftarrow \text{Encrypt}(ID_\mathcal{A}, m_b); \\
b_\mathcal{A} & \leftarrow \mathcal{A}_2(c)
\end{align*}
\]

- The adversary is modeled by two procedures (of unknown code) \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) that communicate through shared variables.
- \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) have oracle access to the extraction algorithm and to both random oracles.
- Neither \(\mathcal{A}_1 \) nor \(\mathcal{A}_2 \) is allowed to query the challenge \(ID_\mathcal{A} \) to the extraction oracle.

\[
\text{Adv}^\mathcal{A}_{\text{IND-ID-CPA}} \overset{\text{def}}{=} \left| \Pr_{G_{\text{IND-ID-CPA}}} [b = b_\mathcal{A}] - \frac{1}{2} \right|
\]
Our proof in CertiCrypt

Formalizing the assumptions

- The Bilinear Diffie-Hellman assumption

 Game $G^{B\text{BDH}}$:
 \[
 P \leftarrow \mathbb{G}_1^+; \ a, b, c \leftarrow \mathbb{Z}_q^+; \ z \leftarrow \mathcal{B}(P, a \cdot P, b \cdot P, c \cdot P) \]

 $\text{Adv}_{\text{BDH}}^B \overset{\text{def}}{=} \mathbb{Pr}_{G_{\text{BDH}}^B}[z = \hat{e}(P, P)^{abc}]$

 $\forall \mathcal{B} \cdot \text{PPT}(\mathcal{B}) \implies \text{negl}(\text{Adv}_{\text{BDH}}^B)$

- The random oracle model

 Oracle $\mathcal{H}_1(ID)$:

 if $ID \notin \text{dom}(L_1)$ then

 $R \leftarrow \mathbb{G}_1^+$;

 $L_1(ID) \leftarrow R$

 return $L_1(ID)$

 Oracle $\mathcal{H}_2(r)$:

 if $r \notin \text{dom}(L_2)$ then

 $m \leftarrow \{0, 1\}^n$;

 $L_2(r) \leftarrow m$

 return $L_2(r)$
Building the reduction...

Game $G_{\text{IND-ID-CPA}}$:

- $(\text{parm}, mk) \leftarrow \text{Setup}(k)$;
- $(m_0, m_1, ID_A) \leftarrow \mathcal{A}_1(\text{parm})$;
- $b \leftarrow \{0, 1\}$;
- $c \leftarrow \text{Encrypt}(ID_A, m_b)$;
- $b_A \leftarrow \mathcal{A}_2(c)$

Game G_{BDH}^B:

- $P \leftarrow G_1^+$; $a, b, c \leftarrow \mathbb{Z}_q^+$;
- $z \leftarrow B(P, a \cdot P, b \cdot P, c \cdot P)$

\[
\text{Adv}^A_{\text{IND-ID-CPA}} \leq \cdots \leq \text{Adv}^B_{\text{BDH}} \exp(1) q \mathcal{H}_2 (1 + q \varepsilon x) / 2
\]

- Seven intermediate games
- Lazy sampling, fundamental lemma, Coron's technique
- Same bound as Boneh & Franklin proof
Our proof in CertiCrypt

- Our reduction is direct in contrast to Boneh-Franklin proof that goes through an intermediate IND-CPA-secure (non-IBE) encryption scheme
- Used a simpler argument instead of an inductive argument in Boneh-Franklin’s proof that we could not reproduce
- 5000 lines of Coq script
- Built in 3 man-months (but automatically verifiable in 10 minutes)
Contributions

- Presented a machine-checked reduction of the security of the BasicIdent IBE scheme to the Bilinear Diffie-Hellman assumption.
- Demonstrated that CertiCrypt can be extended to deal with complex security proofs of cryptographic schemes.

Perspectives

- Formalize Fujisaki-Okamoto meta-result.
- Eliminate RO assumption on G_1: formalize Brier et al work about indifferentiability of hash functions into elliptic curves.
Questions?

Get CertiCrypt (and EasyCrypt) from:
http://certicrypt.gforge.inria.fr
Programs map an initial memory to a distribution of final memories:

$$\llbracket c \in C \rrbracket : \mathcal{M} \rightarrow \mathcal{D}(\mathcal{M})$$

We use Paulin’s measure monad to represent distributions:

$$\mathcal{D}(A) \overset{\text{def}}{=} (A \rightarrow [0,1]) \rightarrow [0,1]$$

For instance

$$\llbracket x \overset{\$}{\leftarrow} \{\text{true}, \text{false}\} \rrbracket \ m = \lambda f \cdot \left(\frac{1}{2} f(m[x/\text{true}]) + \frac{1}{2} f(m[x/\text{false}]) \right)$$

To compute probabilities, just measure the characteristic function of the event:

$$\Pr[c, m : A] \overset{\text{def}}{=} \llbracket c \rrbracket \ m \ 1_A$$
What does it take to trust a proof in CertiCrypt

- **You need to**
 - trust the type checker of Coq
 - trust the definition of the language semantics
 - make sure the security statement and the computational assumption (a few lines in Coq) are what you expect it to be

- **You don’t need to**
 - understand or even read the proof
 - trust proof tactics, program transformations
 - trust program logics, wp-calculus
 - be an expert in Coq
Our proof in CertiCrypt

Game CPA:

- \(L_1, L_2, L_3 \leftarrow \text{nil}; \)
- \(P \leftarrow \mathbb{G}_1^+; \ a \leftarrow \mathbb{Z}_q^+; \)
- \(P_{\text{pub}} \leftarrow aP; \)
- \((m_0, m_1, ID_A) \leftarrow A_1(P, P_{\text{pub}}); \)
- \(d \leftarrow \{0, 1\}; \)
- \(y \leftarrow E(ID_A, m_d); \)
- \(d_A \leftarrow A_2(y) \)

Oracle \(\mathcal{E}(ID) \):

- if \(ID \notin L_3 \) then
 - \(L_3 \leftarrow ID : L_3 \)
 - \(Q \leftarrow \mathcal{H}(ID) \)
 - return \(aQ \)

Oracle \(\mathcal{H}(ID) \):

- if \(ID \notin \text{dom}(L_1) \) then
 - \(R \leftarrow \mathbb{G}_1^+; \)
 - \(L_1(id) \leftarrow R \)
 - return \(L_1(ID) \)

Game BDH:

- \(P \leftarrow \mathbb{G}_1^+; \ a, b, c \leftarrow \mathbb{Z}_q^+; \)
- \(z \leftarrow B(P, aP, bP, cP) \)
- \(B(P_0, P_1, P_2, P_3) : \)
 - \(L_1, L_2, L_3, V, T \leftarrow \text{nil}; \)
 - while \(|T| < q_{\mathcal{H}_1} \) do
 - \(t \leftarrow t \oplus_p \text{false}; \ T \leftarrow t :: T \)
 - \(P \leftarrow P_0; \ P_{\text{pub}} \leftarrow P_1; \ P' \leftarrow P_2; \)
 - \((m_0, m_1, ID_A) \leftarrow A_1(P, P_{\text{pub}}); \)
 - \(Q_A \leftarrow \mathcal{H}(ID_A); \ v' \leftarrow V(ID_A)^{-1}; \)
 - \(R \leftarrow \{0, 1\}^n; \ y \leftarrow (v'P_3, R); \)
 - \(d_A \leftarrow A_2(y); \)
 - \(i \leftarrow [1..|L_2|]; \text{ return } \text{fst}(L_2[i]) \)

Oracle \(\mathcal{E}(ID) \):

- if \(ID \notin L_3 \) then
 - \(L_3 \leftarrow ID : L_3 \)
 - \(Q \leftarrow \mathcal{H}(ID) \)
 - return \(aQ \)

Oracle \(\mathcal{H}(ID) \):

- if \(ID \notin \text{dom}(L_1) \) then
 - \(v \leftarrow \mathbb{Z}_q^+; \)
 - \(V(ID) \leftarrow v; \)
 - if \(T[|L_1|] \) then
 - \(L_1(ID) \leftarrow vP' \)
 - else
 - \(L_1(ID) \leftarrow vP \)
 - return \(L_1(ID) \)

Oracle \(\mathcal{H}_2(r) \):

- if \(r \notin \text{dom}(L_2) \) then
 - \(m \leftarrow \{0, 1\}^n; \)
 - \(L_2(r) \leftarrow m \)
 - return \(L_2(r) \)
Semantic security of an IBE scheme

An IBE scheme is IND-ID-CPA-secure iff

$$\forall A \cdot \text{PPT}(A) \implies \left| \Pr[b = b'] - \frac{1}{2} \right| \text{ is negligible}$$
Semantic security of an **IBE** scheme

An **IBE** scheme is *IND-ID-CPA-secure* iff

\[\forall A \cdot \text{PPT} (A) \implies \left| \Pr [b = b'] - \frac{1}{2} \right| \text{ is negligible} \]
An IBE scheme is \textit{IND-ID-CPA-secure} \iff
\[\forall A \cdot \text{PPT}(A) \implies \left| \Pr [b = b'] - \frac{1}{2} \right| \text{ is negligible} \]
Semantic security of an IBE scheme

An IBE scheme is \textit{IND-ID-CPA-secure} iff

\[\forall \mathcal{A} \cdot \text{PPT}(\mathcal{A}) \land \Pr \left[\bigwedge_{i=1}^{m} id_i \neq id_A \right] = 1 \implies \Pr \left[b = b' \right] - \frac{1}{2} \text{ is negligible} \]